On the Representation Theory of Deformation Quantization

نویسنده

  • Stefan Waldmann
چکیده

In this contribution to the proceedings of the 68 Rencontre entre Physiciens Théoriciens et Mathématiciens on Deformation Quantization I shall report on some recent joint work with Henrique Bursztyn on the representation theory of ∗-algebras arising from deformation quantization as I presented this in my talk. 2000 Mathematics Subject Classification: 53D55

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Koszul duality in deformation quantization and Tamarkin’s approach to Kontsevich formality

Let α be a quadratic Poisson bivector on a vector space V . Then one can also consider α as a quadratic Poisson bivector on the vector space V ∗[1]. Fixed a universal deformation quantization (prediction of some complex weights to all Kontsevich graphs [K97]), we have deformation quantization of the both algebras S(V ∗) and Λ(V ). These are graded quadratic algebras, and therefore Koszul algebr...

متن کامل

Deformation of Outer Representations of Galois Group II

This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...

متن کامل

States and representations in deformation quantization

In this review we discuss various aspects of representation theory in deformation quantization starting with a detailed introduction to the concepts of states as positive functionals and the GNS construction. But also Rieffel induction of representations as well as strong Morita equivalence, the Dirac monopole and the strong Picard groupoid are discussed. E-mail: [email protected]...

متن کامل

Infinite-dimensional Geometry of the Universal Deformation of the Complex Disk

The universal deformation of the complex disk is studied from the viewpoint of infinite-dimensional geometry. The structure of a subsymmetric space on the universal deformation is described. The foliation of the universal deformation by subsymmetry mirrors is shown to determine a real polarization. The subject of this paper may be of interest to specialists in algebraic geometry and representat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002